UDC 546.711.87.23

PHASE EQUILIBRIUM IN SYSTEMS MnSe-Bi, MnBi₂Se₄-Se

D.S.Ajdarova, T.F.Maksudova, I.I.Aliyev, V.M.Rahimova

(Presented by Academician of ANAS A.M.Aliyev)

By methods of physical and chemical analysis we studied two sections (MnSe-Bi, $MnBi_2Se_4$ - Se) of triple system Mn-Bi-Se and their state diagrams were plotted. It was established that the section MnSe-Bi is quasibinary, but $MnBi_2Se_4$ -Se is partially quasibinary.

Keywords: diagram, synthesis, quasibinary, eutectics

Introduction

There is information on interaction in triple system Mn-Bi-Se in literature [1]. Its authors studied the section MnSe-Bi₂Se₃ by physical-chemical analysis and constructed state diagram, established the formation of two intermediate triple peritectic compounds at ratio of components 1:1 and 1:3 – MnBi₂Se₄, Mn₃Bi₂Se₆ correspondingly. Syngony was determined and parameters of unit cellof obtained peritectic compounds were calculated.

Information about binary systems which make up triple Mn-Bi-Se is presented in literature [2, 3, 4].

In the system Bi-Se one congruently melting (Bi₂Se₃) and two incongruently melting compounds (BiSe and Bi₂Se) are formed. Bi₂. Se₃ melts at 706⁰C and has rhombohedral lattice with parameters of a=4,138; c=28,6Å.

Manganese with selenium forms two compounds. MnSe melts congruently at a temperature higher than 1540° C with polymorphic transformations at 6,50, 850° C, but the compound MnSe₂ melts incongruently. Crystals of MnSe have a cubic lattice of type NaCl, where a=5,46 Å [3].

The system Mn-Bi contains one compound of MnBi. Periods of hexagonal lattice for MnBi are equal to a=4,25; c=6,01Å [4].

For detecting the character of chemical interaction in triple system Mn-Bi-Se we investigated the sections MnSe-Bi and MnBi₂Se₄-Se.

The investigation of alloys of the system

was conducted by methods of physical-chemical analysis: differential-thermal (DTA), X-ray phase, microstructural (MSA) analyses and by measuring micro hardness. During synthesis of alloys we used: Bi of type Bi-000; selenium rectifier (frequency 99.9998) and manganeseelectrolytic. Obtaining of complex selenides of manganese has experimental difficulties due to high reactivity of manganese with container material, that's why synthesis of alloys is conducted in graphitized quartz ampoules pumped off till residual pressure 10⁻³ mm of mercury. Ampoule was heated in one temperature furnace vertical at temperatures 100°C higher than liquidus with further annealing one month at temperatures 50°C lower than solidus. Equilibrium was controlled by measuring micro hardness by its unchanged values. Alloys were analyzed by DTA, values of micro hardness, Xray and MSA analyses.

Section MnSe-Bi

According to the data of DTA in alloys of system MnSe-Bi in manganese-rich region besides endoeffects of liquidus and solidus, effects of corresponding polymorphous conversions of manganese differedon thermograms. They were realized at low temperatures by metatectic reactions at slightly below temperatures than for MnSe. Transformation of γ -MnSe to β -MnSe modification in the system occurs at 780°C, but in α -MnSe at 550°C.

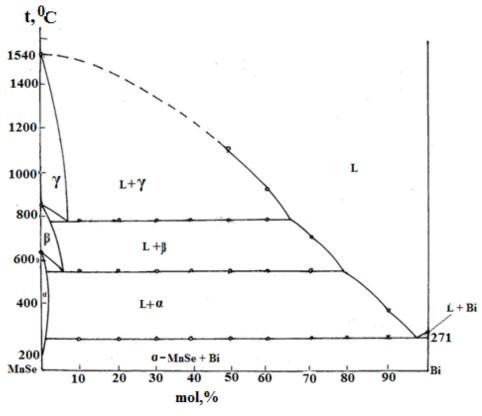


Fig.1. State diagram of the system MnSe-Bi

Table 1

Results of thermal analysis and measurement of micro hardness of alloys of section MnSe-Bi

Content, mol%		Thermal effects, ⁰ C	Microhardn	icrohardness, kG/mm ²	
MnSe	Bi		Dark phase MnSe	Light phase Bi	
95	5	200, 550, 780	140	not measured	
90	10	240, 550, 780	140	not measured	
85	15	240, 550, 780	145	90	
80	20	240, 550, 780	149	90	
70	30	240, 550, 780	149	92	
60	40	240, 550, 780	149	92	
50	50	240, 550, 780	140	92	
40	60	240, 550, 780, 90	140	90	
30	70	240, 550, 700	140	90	
20	80	240, 550	not measured	90	
10	90	240, 300	not measured	90	
5	95	240, 300	not measured	90	
2,5	97,5	240, 280	not measured	90	
-	100	275	not measured	90	

At the range of concentration 10 mol% of MnSe only two effects are fixed in alloys, the higher one conforms to liduidus, but the other one corresponds to eutectic equilibrium and has similar stopping temperature at 250° C (content of eutectic 98 mol% Bi).

MSA data show the existence of two phases. Determination of microhardness of alloys showed that two rows of values were obtained: 140 kG/mm² (MnSe) and 90 kG/mm² (Bi). According to the results of thermal analysis state diagram of MnSe-Bi was plotted (Fig.1).

State diagram was confirmed by the data on determination of microhardness, MSA and X-ray analysis. Liquidus of the section MnSe-Bi consists of two branches of initial crystallization of phases. The section MnSe-Bi is quasibinary section of triple system Mn-Bi-Se and is related to eutectic type.

Section MnBi₂Se₄-Se

For the purpose of determining coordinates of nonvariant points in quasitriple system MnSe-Bi₂Se₃-Se the section MnBi₂Se₄-Se was studied. On the basis of physical-chemical analysis phase diagram of the system MnBi₂-Se₄-Se was plotted (Fig. 2). In the table 2 the results of thermal analysis and measurement of microhardness of alloys of the system MnBi₂Se₄-Se are presented. Characteristics of section MnBi₂Se₄-Se is the fact that it cannot be named quasibinary, since the composition of liquid phase in the crystallization process of alloys is mixed. All alloys of the section are crystallized at temperature of triple peritectics, as result of four-phase reaction:

$$L + Mn_3Bi_2Se_6 \swarrow MnBi_2Se_4 + Se$$

both initial phases L and $Mn_3Bi_2Se_6$ are fully spent. That's why below isotherms at $160^{\circ}C$, which is a solidus of the section, we observed only two phases of $MnBi_2Se_4$ and selenium, microhardness of which corresponds to 100 kG/mm² (MnBi_2Se_4) and $60kG/mm^2$ (Se) (table 2). Liquidus of section consists of two branches of initial crystallization phases of $Mn_3Bi_2Se_6$ and Se. Isotherm at $190^{\circ}C$ and monovariant curve (42-50 mol % Se) correspond to release of double eutectics of $Mn_3Bi_2Se_6 + Se$ monovariant curve (0-42 mol % Se) conforms to three-phase peritectic reaction which are observed in alloys.

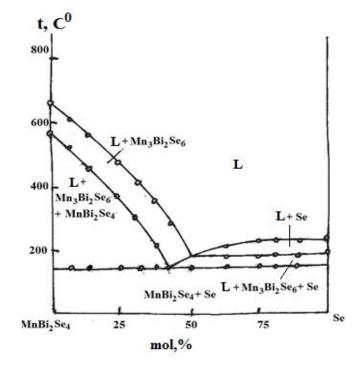


Fig. 2. State diagram of the system MnBi₂Se₄-Se

MƏRUZƏLƏR -<►- REPORTS -<►- ДОКЛАДЫ

Content, mol%		Thermal effects, ⁰ C	Microhardness, kG/mm ²	
MnBi ₂ Se ₄	Se		MnBi ₂ Se ₄	Se
			dark phase	Light phase
100	-	590	100	not measured
95	5	160, 500, 600	100	not measured
90	10	160, 550, 575	105	not measured
80	20	160, 410, 500	109	60
70	30	160, 300, 490	100	60
60	40	160, 210, 300	100	60
50	50	160, 190, 190	100	60
40	60	160, 190, 200	100	60
30	70	160, 190, 205	100	60
20	80	160, 190, 205	100	60
10	90	160, 190, 210	not measured	60
5	95	160, 190, 205	not measured	60
-	100	220	100	60

Results of thermal analysis and measurement of microhardness of alloys of section MnBi₂Se₄- Se

Solubility on the basis of initial components was not practically established. By this way the section MnSe-Bi is quasibinary, but MnBi₂Se₄-Se is partially quasibinary section of triple system Mn-Bi-Se.

REFERENCES

1. Rustamov P.G., Sadikhova S.A., Safarov M.G. Journal of Inorganic Chemistry, 1979, No 5, p. 1417-1421

2. Guidance: State diagrams of double metallic system. Under the editorship of Lyakshiev M.P. M.: Mashinostroenie, 2002, 684 p.

3. *Massalski T.B.* Binary alloys phase diagrams. V.1-2, Ann. Soc. Met. Pergamon Press, 1986, 1124 p.

4. Phase Equilibrium diagrams. VI-XII, Pergamon Press, 1991-1993.

Institute of Catalysis and Inorganic Chemistry of ANAS chem.@science.az

MnSe-Bi, MnBi₂Se₄-Se SİSTEMLƏRİNDƏ FAZA TARAZLIQLARI

D.S.Əjdərova, T.F.Maqsudova, İ.İ.Əliyev, V.M.Rəhimova

Fiziki-kimyəvi analiz metodları ilə Mn-Bi-Se üçlü sisteminin iki MnSe-Bi, MnBi₂Se₄–Se kəsikləri tədqiq olunmuş və onların hal diaqramları qurulmuşdur. Müəyyən olunmuşdur ki, MnSe-Bi kəsiyi kvazibinar, MnBi₂Se₄– Se kəsiyi isə qismən kvazibinardır.

Açar sözlər: diaqram, sintez, kvazibinar, evtektika

ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМАХ MnSe-Bi, MnBi₂Se₄-Se

Д.С.Аждарова, Т.Ф.Максудова, И.И.Алиев, В.М.Рагимова

Методами физико-химического анализа исследованы два разреза (MnSe-Bi, MnBi₂Se₄ - Se) тройной системы Mn-Bi-Se и построены их диаграммы состояния. Установлено, что разрез MnSe-Bi квазибинарный, а MnBi₂Se₄-Se частично квазибинарный.

Ключевые слова: диаграмма, синтез, квазибинарный, эвтектика

Table 2