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ASYMPTOTICS OF THE SOLUTION OF A BOUNDARY VALUE PROBLEM FOR A
BISINGULARLY PERTURBED ONE-CHARACTERISTIC DIFFERENTIAL EQUATION

M.A.Kerimova
(Presented by Academician of ANAS F.A.Aliev)

The first terms of the asymptotics of the solution of a boundary value with regard to inner
layer arising near the bisectrix of the first quadrant were constructed.
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Introduction

Much less works were devoted to the
study of singularly perturbed non-classical dif-
ferential equations compared with the works
belonging to classic equations. Such equations
very often arise when studying different phe-
nomena with non-uniform transitions from one
physical characteristics to another ones. In [1],
M.I. Vishik and L.A. Lusternik have introduced
the so-called one-characteristic differential
equations. The differential equations of 2k +1

even order L, u=A(AU)+B,u="f are
called one-characteristical if the operator A is
of first order, A, is an elliptic operator of or-
der 2k, and B,, is any differential operator of

order at most 2k . As is known, the boundary
layer phenomena arise not only near the bound-
ary of the considered domain, but also interior
to the domain. This occurs when along some
manifold the solution of the degenerate prob-
lem has some discontinuity or discontinuity of
its derivatives, absent in the solutions of the
input problem. In the case when the corre-
sponding degenerate problem has non-smooth
solution, by A.M. II’in terminology these prob-
lems are called bisingular problems. In this pa-
per, the first terms of the asymptotics of a
boundary value problem are constructed for a
third order bisingularly perturbed one-
characteristic differential equation degenerated
into one-characteristic equation of first order
with regard to a boundary layer function near
some line interior to the considered domain.
Earlier, for constructing the asymptotics of bi-
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singularly perturbed problems the combination
method was used, and the method of boundary
functions was not used directly.

Statement of the problem and solution
of the degenerate problem

In D:{(x, y)0<x<1, 0< ygl} we con-

sider the following boundary value problem

Lu=e® ()~ L S F oy =0, (1)

ou
=0, u,,=0, —|,,=0, (0<y<], (2
u|x:0 u|x_1 8X|><_1 ( y ) ()

Uy0=0, U,4=0, (0<x<1), (3)

where £>0 is a small parameter, A is a La-
place operator, F(x,y,u) is a given smooth
function.

For £=0 equation (1) degenerates into
the equation

oW oW )
&'FE'F F(X,y,W)—O. (4)

For degenerate equation (4) we give the
boundary conditions

w

0=0, (0<y<1); W|, =0, (0<x<1). (5)

It is easy to see that the solution of
boundary value problem (4), (5) is continuous
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everywhere in D, but the first derivatives of
the function W(x,y) may have first kind dis-
continuities on characteristic y =x of equation
(6) passing from the origin of coordinates. It is
necessary to construct a boundary layer func-
tion near the line y =x to compensate this dis-
continuity.

Constructing boundary layer functions

We make a change of variables

X, =X+Y, Yy, =y—x and write the operator L,
in new coordinates

3 3 3 3
Lg,lﬂfzgz[az_ 6277 + 6772_82}_
ox;  OX 0y, Ox0y; Oy

2 2
-2¢ 6—Z+6—Z +2 +F(X1—yl A A 77)
ox? oyt ) Tox 2 2'2 2

Introducing local coordinates
X, =%, ¥, =& and looking for a boundary la-
yer function near the line y=x in the form
1 =&ln, +en, +...) as an approximate solution
of the equation L,,(W+7)—L, W =0(¢g), in
the first approximation we get the following
equation to determine 7, :

2
o O _g, (6)
o0& o0&

Obviously, the function 5, = p(x,)(e* -1)

satisfies equation (6). We will consider it the
solution of equation (6) only for &£>0. For

£ <0 as n, we take the solution 7, =0. The
function ¢(x,) is determined from the condi-

tion that the function ag(\N +7) Is continuous
X

on the line y = x and has the form

ow oW
¢(Xl) = _(a‘y—xw - a‘y—x—oj'

It is easily verified that the function

MBRUZSBLOBR —<«p—

REPORTS

%(VV +n) will also be a continuous function

on the line y = x. We multiply the function »

by the smoothing function and preserve its pre-
vious notation.
The function W +7, generally speaking,

does not satisfy the boundary conditions on the
boundaries

E:{(x,y)\x:l 0<y<i} and FZ:{(x,y)\Osst y=1 -
Therefore, it is necessary to construct the
boundary layer functions V and y near the
boundaries T, and I, . We will not dwell on

construction of boundary layer functions near
the boundaries T, and T, .

The boundary layer function near the
boundary T is sought in the form V =V, + &V,

as an approximate solution of the equation
L,W+n+V)-L,,W+7)=0() , where
L, , denotes a new decomposition of the opera-
tor L, near T;. To determine the functions V,
and V, we get the equation:

oV, azv LV
ot 6t2 ot

83\214_62\21 +%:%+6F(l’ y'W+77)VO, (8)
ot a2 ot oy au

where t = (1—x)/& . The boundary conditions

for equations (7), (8) are found from the re-
quirement

W +7+V) = (W+77+V)|x1 0. (9)

When the function F(x, y,u) satisfies the
condition F(1,0,u) =0, then in addition to con-
ditions (9) the constructed sum satisfies also the
condition

W +7+V)|,_, =0. (10)

—<p>— [JOKITIAObI



PHYSICAL, MATHEMATICAL AND TECHNICAL SCIENCES

19

We multiply the function V by the
smoothing function. Then the sum W +7+V

will satisfy also the condition
W +7n+V)|,, =0. (11)

Then we construct a boundary layer type
function y near the boundary TI’,. The function
w 1s sought in the form y =y, +&y,, as the
solution of the equation
LW +7+V +p) - LW +7+V) =0(), Where L,
denotes the decomposition of the operator L,
near I',. The functions y, and y, are determi-
ned from the equation

2
a_‘/’20+%:o, (12)
or or

oy, oy, 3w, Ay, aF(x,l,W+77+V)l// (13)
bl 4% =70 ST Ty,

or® 0t oxor®  ox ou

where r=1_—y. The boundary condition for
&

equations (12), (13) are found from the re-
quirement

W +7+V +y)|,, =0. (14)

We multiply the function y by a smooth-

ing function. In addition to condition (14), the
constructed sum satisfies also the condition

W +7+V +y)|,, =0. (15)

If F(0,1,u) =0, then in addition to condi-
tion (14), (15), the constructed function will
satisfy the following conditions

W+7+V +y), =0, W+n+V+y),,=

=0, %(\N+77+V+w)x_l=0. (16)

Estimating the remainder term and the
main result
We introduce the denotation

z=u-W+n+V +y) a7
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and call the function z a remainder term. It is
easy to show that the function z for x=y is a

solution of the following boundary value problem

L.z=éh(s X, Y), (18)

0
7|0 =12,4, =0, a—)z(\x:lzo, z\yzozz\yﬂ:o, (19)

where h(e, x,y) is a known function.

It is easy to show that for the solution of
boundary value problem (18), (19), the following
estimations are valid

0z

oy

a

<Ceg, <C, (20)

2], o)

L, (D) L,(D)

where ¢ =const >0 is independent of ¢.
Finding u from (17), we have

u=W+n7n+V+y+z. (21)

Joining the obtained results we arrive at
the following statement.

Theorem. If F(x,y,u) e C*(D x (~o0,+0)),s
< F(L0,u)=0, F(0Lu)=0,then for the solution
of problem (1)-(3) in the first approximation it
holds asymptotic representation (21), where W
is the solution of the degenerate problem,
n=en, 1s a boundary layer near the line
y=x,V =V, +¢&V, and v =y, + gy, are boun-
dary layer functions near the boundaries T, and
[,, z is a remainder term, and estimation (20)

is valid for it.

At the end, | express my gratitude to prof.
M.M. Sabzaliev for the problem statement and
discussion of the obtained results.
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BiSINQULYAR HOYOCANLANMIS BIRXARAKTERISTIiKALI DIFERENSIAL TONLIK UCUN
QOYULMUS SORHOD MOSOLOSININ HOLLININ ASIMPTOTIKASI

M.9.Karimova

Bisinqulyar hoyacanlanmis birxarakteristikali diferensial tonlik ti¢iin qoyulmus sorhod masalasinin hallinin birinci
riibiin tonboloni yaxinliginda daxili serhod zolaq tipli funksiya qurulmagla asimptotik ayrilisinin ilk hodlori qurulmusdur.

Agar sozlar: asimptotika, sarhad zolaq tipli funksiya, galiq haddi
ACHMIITOTHUKA PEIIEHUSI KPAEBOM 3AJTAYM JIJISI BUCUHTYJISIPHO BO3SMYIIIEHHOI'O
OJHOXAPAKTEPUCTUYECKOI'O JUDPDPEPEHIHHUAJIBHOT'O YPABHEHMUS
M.2.KepumoBa
ITocTpoeHs! MepBhIE WIEHbI ACUMITOTHKA PEIICHUS KPAacBoi 3a1aun Ajss OUCHHTYJISIPHO BO3MYLIEHHOTO OJIHO-
XapaKTEPUCTUYECKOTO AU((EPEHINATLHOTO YPABHEHUS C YIETOM BHYTPEHHETO CJIOS, BO3HUKAIOIIETO BOIU3H OMCCEK-

TPHUCHI IICPBOI'0 KBaJApaHTa.

Knroueswie cnosa: acumnmomuKa, (j)yHKl/[uﬂ muna nocpanu4noco C1o4, 0CMamouymblil YieH
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