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In this paper the weighted Morrey space is considered on the interval [- z,z] and its Zorko

subspace, in which the shift operator is continuous, is defined. Some properties of the functions
from this subspace are studied. Moreover, a new version of the Riesz theorem on analytic functions

from Hardy class is established.
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Introduction

The concept of Morrey space was intro-
duced by C. Morrey [1] in 1938 in the study of
qualitative properties of the solutions of elliptic
type equations with BMO (Bounded Mean Os-
cillations) coefficients (see also [2;3]). There
appeared lately a large number of research
works which considered many problems of the
theory of differential equations, potential theo-
ry, maximal and singular operator theory, ap-
proximation theory, etc in Morrey-type spaces
(for more details see [1-9]). It should be noted
that the matter of approximation in Morrey-
type spaces has only started to be studied re-
cently (see, e.g., [5-8]), and many problems in
this field are still unsolved. This work is just
dedicated to this field.

In the paper the weighted Morrey space
is considered on the interval [a,b] and its Zor-

ko subspace, in which the shift operator is con-
tinuous, is defined. Some properties of the
functions from this subspace are studied. More-
over, a new version of the Riesz theorem on
analytic functions from Hardy class is estab-
lished.

Needful Information
First define the Morrey-type spaces. Let
I' be some rectifiable Jordan curve on the

complex plane C. By |[M|_ we denote the line-
ar Lebesgue measure of the set M <TI". All the

constants throughout this paper (can be differ-
ent in different places) will be denoted by c.

By Morrey-Lebesgue space L"*(I) ,
O<a <1, p=>1, we mean the normed space of
all measurable functions f(-) on T with the
finite norm

a-1 /
e —su;{BmF f(&)° ng < +40.
BmI‘

u

LP“(T) is a Banach space with
L) =L,(T), L*°(T)=L,(T). Similarly we
define the weighted Morrey-Lebesgue space
L>«(r') with the weight function w(-) on T
equipped with the norm

ey = 8y, T L2 (0).

The inclusion L”*(T")c L”*(T) is valid
for 0<a, <a,<1. Thus, L"*(T)c L,(T),
Vae(0,1], Vp=1. For T'=[-z,7] we will
use the notation L"* (- z,7z)=L"*.

More details on Morrey-type spaces can
be found in [4-9].

Zorko subspace M *“
Let p:[-z,7z]—>(0,+) be
weight function and consider the space M .

some

It is easy to see that if pelL™ | then
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Cl-~, MP* is  true. Indeed, let 0

Fralem, _ _ f,=fl,. =[e.()f(-s}ds—f() =
f e C[- 7, x]. Without loss of generality, we Paip ) s

assume that the function

tinued on the whole axis.
We have

f periodically con-

‘f(x+5)— f(x)\ < Hf(-+5)— f()Hw -0,
0—0.

Consequently

F(+8)= (), ., =[(f(+8)-T()al), , <

<[|f(+5)-f(), Hp(‘)Hp’a —0, 6—>0.

Hence, we have f e M .

Let us show that the set of infinitely dif-
ferentiable functions is dense in M }*“. Con-

sider the following averaged function

C.exp| — : ‘t‘<€
) k)
a)g(t)—— ¢ 82—‘[‘2

0, ‘t‘ > e,
Where

c, Ta) (t)dt =1.

Take Vf e MIS’“ and consider the con-
volution f *g:

<f*m®:f#a—gm9m,
and let

f.0)=(e, = f)Xt)=(f xo, ).

It is clear that f_ is infinitely differenti-
able on [~ 7, z]. We have

Applying Minkowski inequality (11) to
this expression, we obtain

< fo 910,05
- Jo 61916, <

=sup/f(—s)- (),

[s|<e

fo—f

p.

;p—>0, & —0.

The following theorem is true.

Theorem 1. Let pel”®, 1< p<+w,
O<a<1. Then infinitely differentiable func-
tions are dense in M *“.

1-r?
1-2rcost+r?
Poisson kernel for the unit disc. Assume

Let P.(t)= , 0<r<1, bethe

BM P :{f eMPb SSEFE)”f( —s)||p'a;p <+oo} :
Let f eBM > AMP>“. The following

theorem is proved .
Theorem 2. Let feBM)“AM>*

1< p<+owo, 0<a<1. Then Poxf=tl,., >0
as r—1-0.

Riesz type theorems
Let FeHM | 1<p<+4mwo, O<a<l.

Then F(re'’)—>F*(e”), ae. Oel-x,7], as
r —-1-0. Consequently

‘F(re“’}p - F*(eig}p, r—1-0,
ae. Oel-z, x|
Let {r,} ,<(021):r, -1, n>o, be
arbitrary sequence and E, c [-z,7] - be an
arbitrary measurable set. Take an arbitrary
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number &6 >0 . Then, by Egorov's theorem
JEc[-77], such that [e/<5 , where

e=[-7,7]\E (|¢|-is a Lebesgue measure of
the set e) and the sequence F(rnem) uniformly

converges to F*(rneig) asn—o onE . Con-
sequently

F(e”)"do.

lim {\F(rneig}pdezi

n—oo

As it follows from Riesz theorem

F*(eia]pde,

n—o

lim '[‘F(rneie]pde - J’
holds. From these two relations we directly obtain

lim .!F(rneig]pde :_[

N—o0
e

Fre”)'do.

Now, take V& > 0. From the absolute con-
tinuity of the integral, it follows that 36, such

that for e[ < & the following inequality holds.

J

e

F+(ei€]pd0 < %

Then from the relation (1) follows that 3n, :
”F(rneie]pde <&, Vvnxn,.

It is clear that

lim J"F(rneig]pdez IF*(e“’}pde.
EqnE

n—oo
EynE

Consequently, 3n, e N:

[Fre?) do- [IF () do <&,
E,nE EqnE

vn>n,.

We have

E[F(rnem]pdﬁ—j

Eo
<! [|F(re?) do- [F*(”) do
E,nE EynE

+ .”F(rne“g}pdéw IF+(ei9]pdt9£

Eqne Eyne

F(re”) do+[|F () do<ae,

F*(e“’}"des

+

<ok
e
vn>n,,

where n, = max(n,;n, ). From the arbitrariness
of & >0 hence it immediately follows

lim [|F(r,e”)"do = [|F* ()" do.
E, Eo

n—ow

Since, {r, }
is clear that

lim [IF(re”)"do= |
E Eo

.. IS an arbitrary sequence, it

F+(e”’}pd49.

r—oo

On the other hand have

[JOF(“HQ'Q)"—P(ewrng% )

EyNE

{ptorred*{rre”

Eyre Eyre

Hence, considering the above reasoning
we obtain

lim [|F(re"”)-F*(e”)"do =0.
Eo

r—1-0
Thus, the following analogue of Riesz
theorem is true.
Theorem 3. Let FeH , 1< p<+o,
and E, c [-7z,7z]|-be an arbitrary measura-
ble set. Then the following relations are true
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i e 0= [
lim [|F(re"”)-F*(e”)"do =0.
Eo

r—1-0
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COKILi ZORKO ALTFOZALARI VO ANALITIK FUNKSIiYALAR UCUN RiSS TiP TEOREMLOR

B.T.Bilalov, M.i.Olasgarov, Y.Zeren

Isdo [— 7T, 72'] pargasinda ¢okili Morri fozasina baxilmig vo onun sigrayis operatorunun kasilmaz oldugu Zorko

altfozalar1 toyin olunmugdur. Bu altfozadan olan funksiyalarin bozi xassslori 6yronilmisdir. Bundan slave Hardi sin-
findon olan analitik funksiyalar haqqinda Riss teoreminin yeni isbati verilmigdir.

Acar sézlar: Morri fozasi, Riss teoremi, Hardi siniflori

O BECOBBIX NIOANNPOCTPAHCTBAX 30PKO U TEOPEMAX TUIIA PUCCA
JJIA AHAJIMTUYECKUX @ YHKIIUU

B.T.buaanaos, M.U.Aneckepos, F0.3epen

B pabote paccMatprBaeTCst BECOBOE MPOCTPaHCTBO MOppH Ha OTpe3ke [— T, 7T ] 1 OTIPEJICISFOTCS ero 30PKO MOIIPO-

CTPaHCTBA, B KOTOPOM OIEpaTop CIABUTa HENpephIBeH. M3ydarloTcst HEKOTOphIe CBOWCTBA (DYHKIMH 3TOTO MOAIPOCTPAHCTBA.
Kpome Toro, mpuBotiTes: HOBBII BapHaHT JIOKa3aTeIbCTBA TeopeMbl Pricca 00 aHanmTHIeckux (DyHKIMSX 13 Kilacca Xap/id.

Kanroueswie cnosa: npocmpancmeo Moppu, meopema Pucca, knaccol Xapou
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