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of which a mathematical model and principles of control of quadcopter motion are developed taking 

into account the quadcopter dynamics. 
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Introduction 

The state of the art in computing and in-

formation technology allows using mathemati-

cal modeling as a tool for solving problems of 

control of complex technical systems at a fun-

damentally new level. The use of modern mat-

hematical application software packages makes 

it possible to carry out multifaceted studies with 

high accuracy and with minimal costs of reso-

urces of these technical systems. 

An example of these complex systems is 

unmanned aerial vehicles (UAVs), in particular 

quadcopters, which have recently become inc-

reasingly popular as affordable and relatively 

inexpensive technical means of remote data col-

lection, environmental monitoring, delivery of 

small-sized cargo, and a number of  tasks.  

Recent development of unmanned aerial 

vehicles, including quadcopters, makes it possible 

to use them in various fields of human activity. 

Light weight, small size, maneuverability, ease of 

control is the main advantages of quadcopters, 

which allow them to be used in many industries, 

including in the military field. For this reason, 

there is a need for a mathematical model that it 

could describe control of an UAV. The difficulti-

es lies in the fact that a quadcopter has six degre-

es of freedom, while we can control only four pa-

rameters: the rotational speeds of the propellers. 

The process of controlling the quadcopter flight 

dynamics should be carried out on the basis of an 

adequate mathematical model [1].  

The significant place in engineering prac-

tice today is occupied by mathematical prob-

lems [2, 3, 4], which, in one form to another, 

can be associated with the control of mechani-

cal systems [5]. Note that the problem of mat-

hematical modeling and control of quadcopter 

motion is topical among the various problems 

of stability and control of UAV motion [6, 7].  

 A quadcopter is a highly maneuverable 

aircraft that has poor stability, since its dynamics 

are highly susceptible to perturbations due to its 

fairy small mass [8]. A quadcopter control system 

should in principle solve the problems of angular 

and spatial stabilization, and the rise to a given al-

titude (takeoff), and ensure landing, hovering and 

flight along a given trajectory [9, 10]. In the gene-

ral case, given these restrictions, quite high requi-

rements are imposed on a quadcopter control sys-

tem in terms of accuracy and speed. 

Many studies devoted to quadcopter moti-

on modeling [6, 7, 9, 11, 12, 13, 14], where vari-

ous versions of motion equations with various 

automatic control and stabilization systems are 

proposed. 

For instance, in [6], a dynamic model of a 

four-rotor rotorcraft, i.e., quadcopter, is const-
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ructed using the Lagrange method. In [7], an al-

gorithm is presented for quadcopter control 

synthesis based on a mathematical model of 

aircraft motion. Two options for controlling the 

horizontal movement of the aircraft are consi-

dered here, one with specified end point and the 

other with specified cruise speed. 

In this article, we propose a simulation of 

a system of control and stabilization of quadcop-

ter motion. Using the results of works [6, 7], a 

simulation of a quadcopter motion control sys-

tem is presented. The problem involves synthesi-

zing a mode of quadcopter motion control such 

that would allow the quadcopter to move from a 

certain starting point to a specified point in space 

and with specified angles of yaw, pitch and roll. 

To solve this problem, initially, as in [7], an 

algorithm for controlling the flight altitude along 

the *axis z  and the yaw angle   is proposed. 

Next, we consider the control of movement along 

the axis y  and the roll angle  . Then a system for 

controlling the movement of the quadcopter along 

the axis x  and the pitch angle   is developed. 

And finally, by combining z , y  and x , we obta-

in the flight path of the quadcopter. 

Calculations are carried out on the basis 

of the control algorithm, and the calculation re-

sults are illustrated with specific examples. 

Problem statement 

Consider a quadcopter (Fig. 1) with known 

physical parameters, the motion of which can be 

controlled by changing the speed of the propellers. 

  

 
Fig. 1. Quadcopter 

 

 

The aircraft moves relative to an Earth-fixed 

inertial frame of reference and specified by the 

coordinate axes Ox, Oy and Oz that are perpendic-

ular to one another, with the axis Oz directed in 

opposition to the gravity vector. The problem in-

volves making the quadcopter move from the start-

ing point (x0, y0, z0) with initial yaw angle  0, roll 

angle  0 and pitch angle  0 to a specified point 

(xd, yd, zd) with specified yaw angle  d, roll angle 

 d and pitch angle  d. The diagram of such a 

quadcopter is shown in Fig. 2 (see [6, 7]). 

As noted in [7], let   zyx  be the 

radius vector of the quadcopter center of mass, 

 ,,  are the yaw, pitch and roll angles re-

spectively. 
i

f  is the lifting force produced by 

the i-th motor iM  )4,1( i . Here and further 

the prime denotes transposing. 
 

 
Fig. 2. The diagram of a quadcopter 

 

In accordance with [6, 7], the motion of this 

system is described by the following equations: 

 

sinuxm  ,                     (1) 

 sincosuym  ,                     (2) 

mguzm   coscos ,                 (3) 

 ~ ,                             (4) 
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 ~ ,                       (5) 

 ~ .                      (6) 

 

In equations (1) – (6), m  is the mass of the 

quadcopter, 8,9g m/s is the gravity accelerati-

on, ,u  as well as   ~,~,~  are the control in-

puts, which are the functions of 
i

f . In [6], the con-

trol input u is used for the quadcopter altitude cont-

rol, and the control input 
~  allows stabilizing the 

yaw angle. In accordance with [7], the control in-

puts 
~  and 

~  are used for control of the pitch   

and roll   angles, as well as for control of the qu-

adcopter motion along the axes x  and y . 

As shown in [6, 7], if we suppose that 

0coscos  , control of the quadcopter flight 

altitude is defined by the following relation: 

 
 coscos

1
1 mgru  ,               (7) 

where 

)(
21

1 dzz zzazar   .                  (8) 

In formula (8), 
21

, zz aa  are positive con-

stants, and dz  is the desired flight altitude. Tak-

ing into account (7) and (8), from (3) we have  

)(coscos
21

1 dzz zzazarmguzm   

. 

Similarly, for the control of the yaw an-

gle, we have 

)(~
21

daa                       (9) 

Then at 0coscos   and in accordance 

with (7) – (9), from formulas (1)-(4) we have: 

 




cos

tan
1 mgrxm  ,                 (10) 

  tan1 mgrym  ,                     (11) 

 )(
1

21 dzz zzaza
m

z    ,               (12) 

)(
21

daa     .               (13) 

In equations (12), (13), the unknown co-

efficients 
21

, zz aa , 
21

,  aa   must be chosen 

from the asymptotic stability conditions in the 

vertical direction and along the yaw angle, 

which, in turn, satisfies the condition 

dd
zz   , . 

After ensuring control of the flight alti-

tude and the yaw angle, we can proceed to the 

control of the horizontal movement and the roll 

and pitch angles. 

As shown in [6], in the case of time tend-

ing to infinity, from (8) and (12) we have 

01 r . Then, for large values of time T , the 

values of 1r  and   will be sufficiently small, 

and from (10) and (11) we have 





cos

tan
gx  ,                  (14) 

tangy   .                   (15) 
 

It should be noted that in [6, 7], a nonline-

ar algorithm [15] is used for stabilization of the 

coordinates yx, , taking into account (14), (15).  

Further, considering the angles  ,  small 

in (14) and (15), as in [6, 7], and taking in account 

equations (5), (6), we have the following relations 

defining the variation of these coordinates: 

gy  ,                       (16) 

 ~ ,                          (17) 

 gx  ,                       (18) 

 ~ .                           (19) 

 

Thus, here, as in [7], we will propose a 

linear algorithm for stabilizing the horizontal 

movement of the quadcopter. First, we will 

consider the control of the coordinates ( y, ). 

Denoting 

]
(

),(,
)(

),[(
1








dt

d

dt

yyd
yyp d

d

d

d


 , 





















0000

1000

000

0010

1

g
A ,         10001B , 
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
~

1
u , 

 

from subsystem (18)-(19), we get  

.)0( 0

11

11111

pp

uBpAp



 ,
                 (20) 

To synthesize the optimal linear control-

ler of problem (20), we will use the following 

performance index 

 



0

1111111 dtuRupQpJ ,         (21) 

where 1Q  and 1R  are matrices satisfying solu-

tions of the synthesis problem for control of the 

movement along the axis y  and the angle  . 

As a result of solving the synthesis problem and 

applying the standard LQR synthesis proce-

dure, we have the state feedback gains 

11 pKu y  in the form of 

],,,[
2121

 aaaaK yyy  , thus providing for 

dd
yy   ,  at t . 

 

We will now consider the control of the 

coordinates ( x, ). In this case, denoting 

]
(

),(,
)(

),[(
1








dt

d

dt

xxd
xxp d

d

d

d


 , 






















0000

1000

000

0010

2

g
A ,   10002B , 


~

2 u , 

from subsystem (18)-(19), we get  

.)0( 0

22

22222

pp

uBpAp



 , 
                  (22) 

To synthesize the optimal linear control-

ler of problem (22), in this case we will use the 

following performance index 
 

 



0

2222222 dtuRupQpJ ,          (23) 

where 2Q  and 2R  are matrices satisfying solu-

tions of the synthesis problem for control of the 

movement along the axis x  and the angle  . 

As a result of solving the synthesis problem and 

applying the standard LQR synthesis proce-

dure, we have the state feedback gains 

22 pKu x  in the form of 

],,,[
2121

 aaaaK xxx  , thus providing for 

dd
xx   ,  at t . 

To solve systems (12) and (13), we pro-

ceed as follows. First, we consider (12). Sup-

pose that  

]
)(

),[(
3





dt

zzd
zzp d

d
,  

Denote 




















1

0
,

00

10
33

BA .          (24) 

 Then from (12) we get  

.)0( 0

33

33333

pp

uBpAp



 ,
                (25) 

Further, in this case we will use the fol-

lowing performance index 

 



0

3333333 dtuRupQpJ ,         (26) 

where 3Q  and 3R  are matrices satisfying solu-

tions of the synthesis problem for control of the 

movement along the axis z . As a result of solv-

ing the synthesis problem and applying the 

standard LQR synthesis procedure, we have the 

state feedback gains 33 pKu z  in the form of 

],[
21

zzz aaK   or )(
21

13 dzz zzazaru   , 

thus providing for 
d

zz   at t . 

In a similar manner, we can solve (13). 

Then, substituting 11 pKu y , 

22 pKu x  and 33 pKu z  in (20), (22) and 

(25), respectively, and solving these Cauchy 

problems, we get the solutions that are the co-

ordinates of the quadcopter flight path. 

Thus, as the result of quadcopter motion 

control synthesis, we have ( )(),(),( tztytx ), 
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for which dd xx  , ,  

dd
yy   , , dd zz  ,  at 

t . 
 

AMS Subject Classification 2010: 

81T80, 93A30, 97M10 

 
REFERENCES 

 

1. Larin V.B., Tunik A.A. Ilnytska S.I. Some algorithms for 

unmanned aerial vehicles navigation, Outskirts, 2020, 204 p. 

2. Aliev F. A., Larin V. B. Aliev F.A., Larin V.B. Optimi-

zation of Linear Control System. London: Gordon and 

Breach, 1998, 270 p. 

3. Aliyev F.A. Methods for solving applied problems of 

optimization of dynamic systems. Baku: Elm, 1989, 320 

p. [in Russian] 

4. Aliev F.A., Larin V.B., Veliyeva N.I. Algorithms 

of  synthesis of optimal regulators. Outskirts, 2021, 200 p. 

Aliev F. A., Larin V. B. Stabilization Problems for a Sys-

tem with Output Feedback // Int. Appl. Mech.,  2011,  47, 

N 3,.  p. 3 – 49. 

5. Castillo P., Lozano R., Dzul A. Stabilization of a Mini 

Rotorcraft with Four Rotors. IEEE Control Systems 

Magazine. December,  2005, p. 45 – 55. 

6. Larin V. B., Tunik A. A. Synthesis of the Quad-rotor Con-

trol Algorithms in the Basic Flight Modes // TWMS Journal 

of Pure and Appl. Math., 2018,.  9, N2,  p. 147 – 158. 

7. Beard R.W., McLain T.W. Small unmanned aircraft: theo-

ry and practice. Princeton University Press, 2012. 

8. Krasovskiy A.N., Suslova O.A. On the mathematical model 

of the controlled motion of a quadcopter drone. Agrarnyy 

Vestnik Urala, 2016, No. 4, pp. 55-59 [in Russian] . 

9. Shilov K.Ye. Development of an automatic control 

system for an unmanned aerial vehicle of a multi-rotor 

type. Trudy Moskovskogo Fiziko-Tekhnicheskogo Insti-

tuta, 2014, No. 4, pp. 139-152. [in Russian] 

10. Luukkonen T., Modelling and control of quadcopter, 

Aalto University, 2011, 26 p. 

11. Popov N.I., Yemelyanova O.V., Yatsun S.F. Simula-

tion of the quadcopter flight dynamics. Vestnik 

Voronezhskogo Instituta GPS MCHS Rossii. 4 (13), 

2014, pp. 69-75 [in Russian] . 

12. Guryanov A.Ye. Quadcopter control simulation // In-

zhenernyy Vestnik, 2014, No. 8, pp. 522-534, [in Russian]. 

13. Deyst J.J., Harrison J.V., Gai E., Daly K.C. Fault 

Detection, Identification and Reconfiguration for Space-

craft Systems // J. of the Astronautical Sciences,  1981, 

XXIX, N 2,  p. 113 - 126.  

14. Teel A.R. Global stabilization and restricted tracking 

for multiple integrators with bounded controls. Systems 

and Control Lett.1992. 18, N 3, p.165 - 171. 

1
Institute of Applied Mathematics of Baku State University 

2
Institute of Information Technology of ANAS 

3
Azerbaijan State Pedagogical University 

4
 Institute of Control Systems of ANAS 

f_aliev@yahoo.com 

 

 

KVADROKOPTERİN HƏRƏKƏTİNİN VƏ İDARƏ OLUNMASININ RİYAZİ  

MODELLƏŞDİRİLMƏSİ PROBLEMLƏRİ 

 

M.M. Mütəllimov, N.İ. Vəliyeva, Ə.M. Abbasov, F.Ə. Əliyev 

 

Bu işdə kvadrokopterin uçuşunun və idarə olunmasının ümumi prinsipləri təsvir edilmişdir ki, bunun da 

əsasında kvadrokopterin hərəkətinin riyazi modeli, habelə kvadrokopterin dinamikası nəzərə alınmaqla idarə olunması 

prinsipləri işlənmişdir. 
 

Açar sözlər: pilotsuz uçuş aparatı, kvadrokopter, riyazi model, hərəkətin idarə olunması 

 

 

ПРОБЛЕМЫ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ ДВИЖЕНИЕМ  

И УПРАВЛЕНИЯ КВАДРОКОПТЕРА 

 

М.М. Муталлимов,  Н.И. Велиева, А.М.Аббасов, Ф.А. Алиев 

 

В данной статье описаны общие принципы полета и управления квадрокоптером, на основе которых 

разрабатывается математическая модель движением квадрокоптера, а также принципы управления с учетом 

динамики квадрокоптера.  
 

Ключевые слова: беспилотный летательный аппарат, квадрокоптер, математическая 

 


