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Based on the 16-moment MHD transport equations, the propagation of

linear waves in an anisotropic homogeneous cosmic plasma is considered.

A general dispersion relation is derived with allowance for two plasma

components (electrons and protons) and heat �ux along the magnetic �eld.

This dispersion relation is a generalization of the previously studied cases of

one-component (ion) plasma. The case in which the e�ects associated with

the heat �ux are ignored is analyzed in more detail. In the limit of longitudinal

propagation,the wave modes fully consistent with the modes known in the

low-frequency kinetic theory of collisionless plasma are classi�ed. Firehose

and mirror instabilities are analyzed. It is shown that taking into account

the electron component modi�es the growth rates and thresholds of instabilities.

1. INTRODUCTION

Since the measured parameters of highly rare�ed magnetized space plasmas

(e.g., solar and stellar winds, star coronas, star disks, the ionosphere and magneto-

sphere of planets, and interstellar medium) are macroscopic, the MHD description

of such plasmas is preferable. The derivation of a closed set of MHD equations

for collisionless plasma runs into di�culties. The main di�culty is related to the

truncation of the in�nite chains of equations for the moments of the distribution

functions. This requires additional physical justi�cation, as well as a speci�c type

of the particle velocity distribution. Classical examples of such equations describ-

ing plasma as a �uid are the Chew�Goldberger�Low (CGL) equations [1] and the

16-moment transport equations [2, 3], derived for a bi-Maxwellian plasma with

a zero Larmor radius. The main advantage of the 16-moment MHD transport
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equations in comparison with the CGL equations is that they take into account

the heat �ux along the magnetic �eld. In contrast to the CGL equations, the

16-moment equations give a correct expression for the threshold of mirror insta-

bility, which is identical to the result predicted by the lowfrequency kinetic theory

[4,5]. A disadvantage of the MHD descriptions of plasma in comparison with the

kinetic one is that it considers small wave numbers k < ωpp/c (where ωpp is the

proton plasma frequency and c is the speed of light). In a number of papers,

MHD instabilities were modi�ed with allowance for a �nite Larmor radius (see,

e.g., [6, 7]).

In the previous works, we developed the theory of MHD instabilities based on the

16-moment equations [4, 5, 8, 9]. In those works, the results were obtained for an

ion plasma. The role of electrons was reduced only to the maintenance of plasma

quasineutrality. Strictly speaking, the contributions of the plasma electron com-

ponent can be ignored under the condition Te � Tp, which is rarely satis�ed in

reality. Here, we generalize the theory of linear MHD instabilities with allowance

for the electron component and its anisotropy and study the thresholds for the

onset of �rehose and mirror instabilities in an electron�proton anisotropic plasma.

2. MHD TRANSPORT EQUATIONS IN ANISOTROPIC PLASMA

The kinetic description of the dynamic phenomena in a plasma consisting

of electrons and ions is based on the Boltzmann�Vlasov evolutionary equations

for the distribution functions fα (u; r; t) of each particle species α = {e, i}. If

it is necessary to take into account the e�ect of the electromagnetic �eld, these

equations are complemented with Maxwell's equations. The macroscopic plasma

parameters of interest to us (the density, macroscopic �ow velocity, pressure, and

heat �ux) are determined as integral moments of the distribution functions in

the three-dimensional space of microscopic velocities u. In the moving frame of

reference, these moments are represented as

n =

∫
f(u; r; t)d3u, nv =

∫
uf(u; r; t)d3u,

p = m

∫
|u− v|2f(u; r; t)d3u,

p‖ = m

∫
[(u− v) · b]2f(u; r; t)d3u,

S‖ = (m/2)

∫
[(u− v) · b]3f(u; r; t)d3u,

SB = (m/2)

∫
[(u− v) · b]|u− v|3f(u; r; t)d3u,

where b is a unit vector along the magnetic �eld, the mean total pressure

p = (2p⊥ + p‖)/3 is determined by the transverse (p⊥) and longitudinal (p‖)
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pressures, and the total longitudinal heat �ux SB = S⊥ + S‖ is de�ned as the

sum of the longitudinal heat �uxes caused by the transverse (S⊥) and longitudinal

(S‖) thermal motions. The number of these and more high rank integral moments

can be arbitrarily large, and they are all expressed via one another. The chain

of equations describing these moments (transport equations) can also be in�nite.

Additional physically justi�ed conditions for truncating the chain of equations

are needed. In the case of a dense collisional plasma in which the equilibrium

particle distribution functions are close to Maxwellian, these chains of equations

are truncated easily. This results in the usual MHD equations for an isotropic

plasma. However, in the case of rare collisions and in the presence of a strong

magnetic �eld, the particle distribution functions are not Maxwellian and the

truncation of the chain of the moment equations for a nonequilibrium plasma is

problematic. In this case, the solution of the kinetic equation for each particle

species is usually sought as an expansion about a given distribution function with

an anisotropic temperature with respect to the direction of the external magnetic

�eld. If this function is assumed to be bi-Maxwellian (the simplest form for an

anisotropic plasma), then, for very small Larmor radii of particles gyrating in the

magnetic �eld (rB → 0) , a system of 16-moment equations is obtained [2, 3]. In

the generally accepted notation, these equations are written as

dρα
dt

+ ραdivv = 0, (1)

ρ
dv

dt
+

1

4π
B× (∇×B) +

∑
α

[
∇pα⊥ + (B · ∇)

(
pα‖ − pα⊥

B2
B

)]
= 0, (2)

Bpα‖
d

dt
ln

(
B2pα‖

n3

)
+ B · ∇Sα‖ + 2

(
Sα⊥ −

1

2
Sα‖

)
B · ∇ lnB = 0, (3)

Bpα⊥
d

dt
ln
(pα⊥
Bn

)
+ B · ∇Sα⊥ − 2Sα⊥B · ∇ lnB = 0, (4)

BSα‖
d

dt
ln

(
B3Sα‖

2n4

)
+

3pα‖

mα
B · ∇

(pα‖
n

)
= 0, (5)

BSα⊥
d

dt
ln

(
Sα⊥
n2

)
+
pα‖

mα
B · ∇

(pα⊥
n

)
−
(
pα‖ − pα⊥

)
pα⊥

nmα
B · ∇ lnB = 0, (6)

dB

dt
+ Bdivv − (B · ∇)v = 0, divB = 0. (7)
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When deriving these equations, it is assumed that the plasma is quasineutral,

ne ≈ ni = n, and the mass velocities of its components are close, ve ≈ vi = v.

Here, d/dt = ∂/∂t+ v · ∇, ρα = nmα, and Sα‖ and Sα⊥ are the �eld-aligned heat

�uxes caused by the longitudinal and transverse thermal motions of the particles

of species α. If we neglect these �uxes, Sα‖ = 0 and Sα⊥ = 0, we obtain the

laws of variation in the longitudinal and transverse thermal energies along the

trajectory of a �uid element (the left-hand sides of Eqs.(3) and (4)). This pair of

equations (the so-called double adiabats) and Eqs.(1), (2), and (7) form a closed

system of equations known as the CGL equations [1]. However, if we use the CGL

equations, Eqs.(5) and (6) remain unsatis�ed, because, when deriving the CGL

equations, the third moments of the distribution function were omitted without

any justi�cation; i.e., the heat �uxes were not taken into account. Equations

(1)�(7) given here contain heat �uxes and form a more complete system. The

CGL equations do not follow from these equations as a special case.

3. DISPERSION RELATION OF THE WAVES

For simplicity, we consider the case in which plasma in the unperturbed state

is uniform and stationary: all quantities v0, ρ0, p‖0, p⊥0,B0, S‖0, and S⊥0 for

particles of species α do not depend on the coordinates and time. Equations

(1)�(7) automatically satisfy these conditions with nonzero heat �uxes. Let us

consider small perturbations of physical quantities with respect to the equilib-

rium state. For example, we represent the pressure as p = p0 + p′ (r, t), where

p′ (r, t) ∼ exp i (k · r− ω0t) and |p′|� p0. Here, ω0 = ω+(v0 · k) is the oscillation

frequency in the frame of reference moving with the plasma and k is the wave

vector of oscillations. For the small wave perturbations we can derive dispersion

relations. Uncompressible wave modes are separated from the common system

and their dispersion relation is:

ω2 = c2Ak
2
‖

(
1− 4π

∑
α

pα‖ − pα⊥
B2

)
. (8)

This is a prototype of the dispersion relation for Alfven wave

modes in an isotropic plasma. In the dimensionless parameteres

this may written as ω2/c2i‖k
2
‖ = βi + ϕi − 1 + (ϕe − 1)/Ψ2, where

βi = B2/(4πpi‖), ϕα = Tα⊥/Tα‖,Ψ
2 = Ti‖/Te‖, ci - ion sonic velocity. Un-

der the condition βi + ϕi + ϕe/ψ
2 < 1 + 1/ψ2, Alfven modes become unstable

and �rehose instability arises. In two cases, the growth rate of �rehose instability

passes to the well-known case: for ψ2 � 1 (cold electrons, Te‖ � Ti‖) and for

isotropic electrons, ϕe = 1. If the plasma electron component is anisotropic,
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ϕe 6= 1, then, for ϕe > 1 (Te⊥ > Te‖), �rehose instability is suppressed, whereas

in the opposite case, ϕe < 1 (Te⊥ < Te‖), on the contrary, instability intensi�es.

Other dispersion relation is a 12th-degree polynomial equation for the nor-

malized phase velocity x = ω/k‖ci‖,

U12x
12 + U10x

10 + U8x
8 + U6x

6 + U4x
4 + U2x

2 + U0 +

+γα

[
U9x

9 + U7x
7 + U5x

5 + U3x
3 + U1x

]
= 0, (9)

which is a general dispersion relation for compressible wave modes in an in�nite

homogeneous anisotropic magnetized two-component plasma. Here, we took into

account the �eld-aligned heat �uxes carried by particles of species α. The coef-

�cients U0−12 of the equation are complicated real functions of the parameters

of the problem. These coe�cients are given in the Appendix of the paper [10].

Dispersion relations of the waves (slow ion-acoustic (SIA), slow electron-acoustic

(SEA), fast magnetosonic (FMS), slow sound (SS), fast ion-acoustic (FIA) and

fast electron-acoustic (FEA) modes) in the �uxless case are shown in the �g.1

and �g.2: For a di�erent set of parameters, when condition for the onset of �re-

Fig. 1. Wave phase velocity squared vs. propagation angle parameter l = cos2 θ in

the case arising of �rehose instability: ϕe = ϕi = 0.5, βi = 1, and ψ = 0.5. Instability

arises if ν2ph < 0. (a) Electronic acoustic waves and (b) all other wave branches. Only

the Alfven (A) and fast magnetosonic (FMS) modes become unstable.

hose instability is not satis�ed, mirror instability may arise at large propagation

angles. Such an example is presented in Fig.2, where mirror instability develops

on the branch of the FIA mode. For mirror instability, there is also a threshold.
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Fig. 2. Wave phase velocity squared vs. propagation angle parameter l = cos2 θ in

the case where �rehose instability condition is not satis�ed: ϕe = ϕi = 1.5, βi = 1,

and ψ = 0.5. In this case, mirror instability of quasi-transverse fast ion-acoustic (FIA)

modes is possible.

An increase in the magnetic �eld (βi ∼ B2) suppresses the instabilities under

consideration. This can be seen from the examples presented in Fig.3.

4. CONCLUSIONS

In the previous theoretical studies of MHD instabilities in anisotropic plas-

mas, mainly in the CGL and 16-moment approximations, the role of electrons was

ignored. It was reduced only to ensuring plasma quasineutrality. However, under

actual space conditions, both ion and electron plasma components are substan-

tially nonisothermal (Te 6= Ti) and anisotropic (T⊥ 6= T‖). Our main goal was to

clarify the e�ect of the presence of the electron component on the conditions for

the onset of the known types of MHD instabilities in an anisotropic plasma. To

this end, we used 16-moment MHD transport equations with allowance for the

heat �ux in a multicomponent bi-Maxwellian plasma. It is shown that allowance

for electrons introduces into the problem new parameters associated with the

plasma nonisothermality, the anisotropy of the electron component, and the elec-

tron heat �ux. For simplicity, with neglect of heat �uxes, the role of the electron

component in the onset of �rehose and mirror instabilities has been studied in

detail. It is shown that, in the actually observed parameter ranges, the electron

component cannot be ignored. The criteria for the onset of instabilities, as well
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Fig. 3. E�ect of the magnetic �eld (parameter βi ) on the condition for the onset of

instability: (a) phase velocity squared vs. propagation angle of the FMS modes (the

second �rehose instability) for ϕe = 0.5, ϕi = 0.7, and ψ = 1; (b) FIA modes (mirror

instability) for ϕe = 1.2, ϕi = 1.5, and ψ = 0.7.

as their growth rates, depend substantially on the parameters ψ2 = Ti‖/Te‖ and

ϕe = Te⊥/Te‖.

In the absence of �eld-aligned heat �uxes, there are three types of MHD insta-

bilities: incompressible parallel �rehose instability, compressible oblique �rehose

instability, and compressible mirror instability. All the instabilities are aperiodic;

i.e., the real part of the frequency is zero, Re(ω)=0. This is primarily a conse-

quence of neglecting the Landau damping in deriving the MHD equations. The

inclusion of dissipative e�ects (e.g., heat �uxes, Hall e�ects, etc.) will stabilize

the instability, and the instability will become oscillatory. The main disadvan-

tage of the obtained expressions for the growth rates of MHD instabilities is that

these growth rates are linear functions of the wavenumber, Im(ω)∼ k. This means

that, on very small scales (k →∞), the instability growth rates increase without

bound. The reason is that the 16-moment MHD transport equations used are

derived under the assumption of a zero Larmor radius.

The properties of �rehose and mirror instabilities are well-known from the low-

frequency kinetic theory [13�16]. The in�uence of a �nite Larmor radius on the

thresholds and growth rates of kinetic instabilities, as well as their stabilization,

is widely discussed in the literature (see, e.g., [6, 17,18]). For wavelengths on the

order of the ion Larmor radius, the e�ective elasticity of the magnetic �eld lines

increases substantially, which leads to a maximum growth rate and an increase

in the threshold for mirror instability [17]. At shorter wavelengths, the e�ective
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electric �eld acting on the ions decreases (due to the averaging caused by Larmor

gyration). This leads to a decrease in the growth rate toward shorter wavelengths.

In the cases under consideration, the electrons were mainly assumed to be isotropic

and cold. In a more general case, where the electrons of a bi-Maxwellian plasma

are anisotropic and not cold, the conditions for the onset of mirror instability

are substantially modi�ed [15, 19�23]. It is found that the maximum growth

rate of mirror instability is smaller when the electrons are isotropic; however, if

anisotropy appears, the growth rate increases. The �nite Larmor radius e�ects

in the presence of anisotropic electrons were considered in [7, 24]. It was found

that suppression of instability by the e�ects related to the �nite Larmor radii of

electrons and ions depends substantially on the degree of anisotropy of the elec-

tron temperature. The in�uence of the �nite Larmor radius e�ects on �rehose

instability has been studied by many authors (see, e.g., [6, 25�30]). The main

result is that instability is suppressed at small spatial scales. It is very di�cult to

take into account the �nite Larmor radius and dissipative e�ects in a �uid model

of magnetized collisionless plasma. In the simplest case in which �eld-aligned

heat �uxes are disregarded and double adiabats (CGL equations) are satis�ed, an

attempt to describe �rehose modes by using such an approach was made in [31].

In that work, short-wavelength �rehose instability was stabilized by including the

Hall damping and �nite ion Larmor radius e�ects. Analysis of instability of a

collisionless magnetized plasma in the �uid model in a more general case in which

heat �uxes, �nite Larmor radius e�ects [32], and weak collisions between particles

[33] are taken into account is a very complicated but important problem.

The results of this work can be used to interpret the observed low-frequency large-

scale turbulence in the solar and stellar wind plasma. Note that more details about

the results presented here can be found in our published work [34].
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