
Astronomical Journal of Azerbaijan, 2022, Vol. 17, No. 1

INFLUENCE OF STELLAR APPROACHES ON
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The spatial motion of a passively gravitating body is investigated within
the restricted three-body problem.The exact expression of the force function
without expansion in series is used.The influence of the perturbing star as it
approaches the Sun on the orbit of Jupiter is investigated.It is shown that a star
of one to five solar masses that approaches the Solar System in a hyperbolic
orbit within a minimum distance of 50 to 100 AU significantly affects the size
and shape of Jupiter’s orbit only in the case when the sample star is at the
perihelion, and Jupiter is in conjunction or in opposition to it.The results are
shown in the form of figures and tables.
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1. STATEMENT OF THE PROBLEM.EXPRESSION OF THE
DISTURBING FUNCTION

The planar averaged three-body problem is considered in [1, 2] by Mamedov,
and the doubly averaged parabolic three-body problem is considered
by Mammadli [3]. It is shown that in the case of a moderate approach of the
disturbing body to the central body, the dimensions and shape of the orbit of the
central body remain constant, and only its orientation changes. The disturbing
body is taken to be a solar-mass star; the planetary orbits are studied in the case
of its approach toward the Sun.

Kholshevnikov and Mishchuk [4] considered a restricted hyperbolic three-body
problem and estimated the influence of a solar-mass star on the orbits of the
planets in the case of its approach to the Sun at a distance q′ of 100 to 1152 AU.
It was shown that under a moderate encounter of such a star with the Sun, the

* E-mail: azad_mammadli@yahoo.com

72



AJAz: 2022, 17(1), 72-85 INFLUENCE OF STELLAR.....

dimensions of the planetary orbits do not exhibit changes. If the star approaches
the Sun at a distance q′ ≥ 100 AU, rather minor changes in the inclination, ec-
centricity, longitude of the ascending node, and argument of the perihelion of the
planetary orbits are observed.

In the paper, Holman Wiegert [5] has numerically investigated the long-term
stability of planets near one of the stars in a binary system. The mass ratio µ

and the binary eccentricity e are determined for the range 0<e<0,8 and 0,1<
µ<0,9 can be used to guide searches for planets in binary systems. The stability
of a mutually interacting system of planets orbiting one star of a binary system
is examined.

The authors Adams & Laughlin [6] constrain the star formation environment
of the Sun within the scenario of external radioactive enrichment by a massive
star. They came to this conclusion using the observed properties (the isotopic
compositions of meteorites and the regularity of the planetary orbits) of our Solar
system. According to the authors the Sun is most likely to have formed within a
stellar group containing about 2000 ± 1100 members. In this case the probability
of a star formation in this type of environment is only about 1 out of 120 solar
systems are expected to form under similar conditions.

According to the author Zwart [7] the initial mass and radius of the star clus-
terin which the Sun was born constrain to M ≈ 500− 3000M⊙ and R ≈ 1− 3pc,
respectively.

The authors Hao, Kouwenhoven & Spurzem [8] demonstrate that multi planet
systems are prone to instabilities as a result of frequent stellar encounters in these
star clusters much more than singleplanet systems. They consider two types of
planetary configurations orbiting Sun-like stars and find that in the equal-mass
planet model, 70 percent of the planets with initial semimajor axes a > 40 au are
either ejected or have collided with the central star or another planet within the
life time of a typical cluster, and that more than 50 percent of all planets with
a < 10 au remain bound to the system. Planets with short orbital periods are not
directly affected by encountering stars. However, secular evolution of perturbed
systems may result in the ejection of the inner most planets or in physical colli-
sions of the innermost planets with the host star, up to many thousands of years
after a stellaren counter.

In the paper Li & Adams [9] considered scattering encounters between solar
systems and passing cluster members. The authors calculate the corresponding in-
teraction cross-sections for eccentricity increase, inclination angle increase, planet
ejection and capture four giant planets - Jupiter, Saturn, Uranus and Neptune.
They find a universal formula that gives the cross - sections as a function of stellar
host mass M∗(0.25M⊙ ≤ M∗ ≥ 2M⊙), cluster velocity dispersion νb(1 ≤ νb ≤ 16)

in km/s ,starting planetary orbital radius, and final eccentricity.
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The present study is concerned with the evolution of Jupiter’s orbit during
stellar encounters with the Solar System within the restricted hyperbolic three-
body problem.This work is of great interest in the context of the evolution of the
initial orbit of the passively gravitating body (planet) after the passage of the
perturbing body (star) in a hyperbolic orbit around the central body (the Sun).

The relevance of such tasks lies in solving the cosmogonic problem in relation
to the solar system, namely, the evolution and origin of the planets. After all, the
formation of the planets of the solar system is not excluded, and its present state
can be connected just with the approach of a massive star to it, or a collision with
it. The availability of observational materials in relation to such problems is not
possible. Therefore, for comparison, above are the results obtained in the works
of other authors devoted to similar problems.

Let the disturbing body be a star P ′ with a mass m′, which moves relative to
the central body, the Sun P0 with a mass m0 , in a hyperbolic orbit. The motion
of the passively gravitating body, Jupiter P with a mass m, needs to be studied.

Let us choose a rectilinear Cartesian coordinate system with the origin at the
center of the body P0. In this coordinate system, the differential equations of
motion of the passively gravitating body P will be written as follows [1–3,10]:

d2x

dt2
=

∂U

∂x
,

d2y

dt2
=

∂U

∂y
,

d2z

dt2
=

∂U

∂z
(1)

where the force function U=U(x,y,z,x′, y′, z′)depends on the coordinates x y and
z and x′, y′andz′ of the bodies P and P ′ and is determined by the equation

U = U0 +R, U0 =
G (m0 +m)

r
, R =

Gm′

r′2

(
r′2

∆
− r cos θ

)
. (2)

Here, G is the gravitational constant, U0 is the force function of the undisturbed
motion, and R is the disturbing function. Therefore, the system of equations (1)
at U = U0, or, equivalently, R=0, is the system of equations of the undisturbed
motion. Additionally,r is the radius-vector of the body P, and r′ and ∆ are the
distances of the disturbing body from the central body P0 and from the point P :

r2 = x2 + y2 + z2, and r′2 = x′2 + y′2 + z′2 (3)

∆2 =
(
x− x′

)2
+
(
y − y′

)2
+
(
z − z′

)2
= r2 + r′2 − 2rr′ cos θ. (4)

Here, θ is the angle between the radius-vectors r and r’ , and the cosine of this
angle is determined by the equation

cos θ =
xx′ + yy′ + zz′

rr′
= αα′ + ββ′ + γγ′ (5)
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The following expressions are used for the rectangular coordinates x y and z
[10–12]:

x = rα, α = cosu cosΩ− cos i sinu sinΩ,

y = rβ, β = cosu sinΩ + cos i sinu cosΩ

z = rγ, γ = sin i sinu

(6)

If all variables in (6) are primed, we obtain similar expressions for the coordinates
x, y, and z1001[10, 12]. Here, u = v + ω and u′ = v′ + ω′ are the arguments
of latitude, Ω and Ω′ are the longitudes of the ascending node, i and i′ are the
orbital inclinations of the bodies P and P ′ to the main plane, ω and ω′ are the
arguments of pericenters (for Jupiter’s orbit, the argument of perihelion), and v

and v′ are the true anomalies of their orbits.
It should be noted that eq.(6) is the solution of equation system (1) for the

undisturbed motion, i.e., at U = U0, (or R = 0 ) [10]. For the disturbed motion
(R ̸= 0), the solution of equation system (1) is also represented as (6), under
the condition that the orbital elements u′,Ω′, i′, a′ and e′ of the disturbing body
are considered known, and the orbital elements u,Ω, i, a and e of the body P are
determined from differential equations, such as the Lagrange equations (see the
next section), for the osculating elements [10,12].

Now let us express the disturbing function R via the orbital elements. For
this we will use the orbital equation of the body P :

r =
p

1 + e cos v
, p = a

(
1− e2

)
(0 < e < 1). (7)

For the hyperbolic motion of the disturbing body P ′, we have

r′ =
p′

1 + e′ cos v′
, p′ = a′

(
e′2 − 1

)
= q′

(
1 + e′

)
,
(
e′ > 1

)
. (8)

Thus, the disturbing function R from (4), using the above mentioned formulas
(5)–(8), is expressed via the orbital elements as follows:

R =
Gm′

r′2

(
r′2√

r2 + r′2 − 2rr′ cos θ
− r cos θ

)
(9)

For brevity, expressions (7) and (8) for r and r′ , as well as expression (5) for
cosθ in (9), are not substituted. This substitution is performed in the computer
numerical integration of the Lagrange equations for osculating elements.
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2. LAGRANGE EQUATIONS FOR OSCULATING ELEMENTS

Let us write out the Lagrange equations for Keplerian osculating elements in
the restricted threebody problem(see [10, 12]) in the new independent variable
v′ In these equations, the equation relative to will be considered instead of the
equation relative to the mean anomaly M. For this, the following equations can
be used [12]:

µ = G (m0 +m) = n2a3, µ′ = G
(
m0 +m′)

∂R

∂M
=

∂R

∂v

∂v

∂M
,

dv

dt
=

∂v

∂M

dM

dt
+

∂v

∂e

de

dt
, r′2dv′ =

√
µ′p′dt

(10)

∂v

∂M
=

∂v

∂M0
=

a2
√
1− e2

r2
, and

∂v

∂e
=

a sin v

r

(
1 +

p

r

)
(11)

where the radius-vectors r and r′ , as well as focal parameters p and p′, are de-
termined earlier with eqs. (7) and (8). Let as write out the Lagrange equations
as

da

dv′
=

2aδ2
√
p (1− e2)

∂R̃

∂v
, δ = 1 + e cos v

de

dv′
=

1

e
√
p

[
δ2

∂R̃

∂v
−
(
1− e2

) ∂R̃
∂ω

]
di

dv′
=

1

sin i
√
p

(
−∂R̃

∂Ω
+ cos i

∂R̃

∂ω

)
dΩ

dv′
=

1

sin i
√
p

∂R̃

∂i

dω

dv′
=

1
√
p

(
−cos i

sin i

∂R̃

∂i
+

(
1− e2

)
e

∂R̃

∂e

)
(12)

and

dv

dv′
=

δ2µ

p
√
p

r′2√
µµ′p′

+

+
1

ep
√
p

[
−2a2δ2e

∂R̃

∂a
− pδ2

∂R̃

∂e
+ aδ2(1 + δ) sin v

∂R̃

∂v
− p(1 + δ) sin v

∂R̃

∂ω

] (13)

Here, a, e, and p are the semimajor axis, eccentricity, and focal parameter of the
orbit of the body P , while i,Ω, and ω are the inclination to the main plane xy,
longitude of the ascending node, and the argument of perihelion, respectively.
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In system of equations (12), the function R̃ is related to the disturbing function
R from (9), as follows:

R̃ =
r′2R√
p′µµ′ = A

(
r′2√

r2 + r′2 − 2rr′ cos θ
− r cos θ

)
(14)

where
A =

m′√
p′ (m0 +m) (m0 +m′)

. (15)

The function R̃ is expressed in the orbital elements by substituting expressions
(7) and (8) for r and r′, as well as expressions (5) and (6) for cos θ, into (14).
This allows the partial derivatives of the function R̃ with respect to the orbital
elements to be calculated. For brevity, no such substitution is not shown here,
although it is performed in the computer numerical integration of the Lagrange
equations for osculating elements.

Thus, solving the system of equations (12) and (13) using numerical integra-
tion, we find the osculating elements

a = a
(
v′
)
, e = e

(
v′
)
, i = i

(
v′
)
,Ω = Ω

(
v′
)
, ω = ω

(
v′
)
, v = v

(
v′
)
,

and calculate the mean motion n = n (v′) and mean anomaly M = M (v′) with
the formulas

n =

√
µ

a3 (v′)
, M = M0 + n (t− t0) .

Further, we find the relation between the independent variable v′ and time t. In
the case of a hyperbolic orbit ( e′ > 1 ) of the disturbing body, this relation is
established by the equation [10]

t− t0 =
q′
√
q′√

µ′ (e′ − 1)3

[
e′ tanF − ln tan

(
F

2
+

π

4

)]
, tan

F

2
=

√
e′ − 1

e′ + 1
tan

v′

2
,

(16)
where the mass parameter µ′ is determined by Eq. (10).

3. SPECIAL CASES OF THE LAGRANGE EQUATIONS

In the case of small inclinations, it is convenient to use the Lagrange variables
p̃ and q̃ instead of the elements i and Ω [12] :

p̃ = tan i sinΩ, q̃ = tan i cosΩ, i = arctan
√
p̃2 + q̃2,Ω = arctan

p̃

q̃
(17)
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at small eccentricities, the Lagrange variables h̃ and k̃ should be introduced
instead of the elements e and ω in the following formula [12]:

h̃ = e sinω, k̃ = e cosω, e =

√
h̃2 + k̃2, ω = arctan

h̃

k̃
. (18)

As a rule, the variables h̃ and k̃ are introduced instead of the elements e and
ω̃ = ω +Ω. Since we are interested in the variations in the elements e and ω, we
use Eq. (18).

Now the disturbing function R̃ from (14), which is involved in the system of
equations (12) and (13), should be expressed through the Lagrange variables:

R̃ ≡ R̃
(
v, h̃, k̃, p̃, q̃, u′, i′,Ω′

)
= A

(
r′2√

r2 + r′2 − 2r′r′ cos θ
− r cos θ

)
(19)

To do this, it is sufficient to replace the orbital elements e, ω,Ω, and i for cos θ
and r in expressions (5), (6), and (7) with the Lagrange variables due to Eqs. (17)
and (18). Then, we can calculate the partial derivatives of the function R̃ with
respect to the Lagrange variables. For brevity, such a substitution is not shown
here. Thus, the Lagrange equations (12) and (13) in the new variables will have
the form

da

dv′
=

2aδ2

√
p
(
1− h̃2 − k̃2

) ∂R
∂v

,

dh̃

dv′
=

h̃δ2(
h̃2 + k̃2

)√
p

∂R̃

∂v
+

1− h̃2 − k̃2
√
p

∂R̃

∂k̃
−

k̃
(
1 + p̃2 + q̃2

)
√
p (p̃2 + q̃2)

(
p̃
∂R̃

∂p̃
+ q̃

∂R̃

∂q̃

)
,

dk̃

dv′
=

k̃δ2(
h̃2 + k̃2

)√
p

∂R̃

∂v
− 1− h̃2 − k̃2

√
p

∂R̃

∂h̃
−

h̃
(
1 + p̃2 + q̃2

)
√
p (p̃2 + q̃2)

(
p̃
∂R̃

∂p̃
+ q̃

∂R̃

∂q̃

)
,

(20)

dp̃

dv′
=

p̃
(
1 + p̃2 + q̃2

)
√
p (p̃2 + q̃2)

(
k̃
∂R̃

∂h̃
− h̃

∂R̃

∂k̃

)
+

√
(1 + p̃2 + q̃2)3

√
p

∂R̃

∂q̃
,

dq̃

dv′
=

q̃
(
1 + p̃2 + q̃2

)
√
p (p̃2 + q̃2)

(
k̃
∂R̃

∂h̃
− h̃

∂R̃

∂k̃

)
−

√
(1 + p̃2 + q̃2)3

√
p

∂R̃

∂p̃
,

dv′

p
√
p

r′2√
µµ′p′

+
1√

ĥ2 + k̃2p
√
p

{
−2a2δ2

√
h̃2 + k̃2

∂R̃

∂a
+ aδ2(1 + δ) sin v

∂R̃

∂v
−

−p

[
δ2h̃√
h̃2 + k̃2

− k̃(1 + δ) sin v

]
∂R̃

∂h̃
− p

[
δ2k̃√
h̃2 + k̃2

− h̃(1 + δ) sin v

]
∂R̃

∂k̃

}
.

(21)
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Here,

δ = 1 +

√
h̃2 + k̃2 cos v, p = a

(
1− h̃2 − k̃2

)
The system of equations (20) for osculating elements is applicable for determining
the elements and studying the evolution of Jupiter’s orbit, since its inclination
and eccentricity are rather small.

4. CHANGE IN THE ORBITAL ELEMENTS OF JUPITER DURING A
STELLAR ENCOUNTER WITH THE SOLAR SYSTEM

As an example, we will take a sample star approaching the Solar System with
mass m′, heliocentric distance q′ (in AU ), and orbital eccentricity e′. These
parameters vary within

M⊙ ≤ m′ ≤ 5M⊙, 50 ≤ q′ ≤ 100, 1 < e′ ≤ 5, (22)

where M⊙ is the mass of the Sun. Additionally, the angular elements i′,Ω′, and
ω′ of the sample star are referred to the coordinate system Oxyz with its origin
at the center of the Sun; these elements vary within

0◦ ≤ i′ ≤ 90◦, 0◦ ≤ Ω′ ≤ 180◦, 0◦ ≤ ω′ ≤ 180◦ (23)

The initial values of Jupiter’s orbital elements are taken from the Astronomical
Yearbook of 1988 and are determined as

a0 = 5.2026032AU, e0 = 0.04849485, i0 = 1◦18′11..′′77,

λ0 = 34◦21′05..′′34, π0 = 14◦19′52.”71, Ω0 = 100◦27′51.1′′98.

Jupiter’s angular elements i0, λ0, π0, and Ω0 are referred to the ecliptic and
equinox of the epoch J2000.0, and the gravitational constant equals the Gauss
constant: G = k2 = 0.000295936. Additionally, the elements ω0 and M0 for
Jupiter are determined by the equations ω0 = π0 − Ω0 and M0 = λ0 − π0.

Using the above-mentioned initial values for Jupiter’s orbital elements, differ-
ential equation system (20) is numerically integrated in the Lagrange variables at
the initial value of the independent variable v′0 = −3π/4. The orbital elements
of the sample star are taken as e′ = 1.15, i′ = 5◦,Ω′ = 80◦, and ω′ = 40◦. These
elements play an important role in the construction of the diagrams and tables.

Figures 1 and 2 show the variations in the semimajor axis a (with the initial
value a0 = = 5.2026032AU ) of Jupiter’s orbit as a function of the true anomaly
v′ of the star moving in a hyperbolic orbit (e′ > 1) relative to the Sun at certain
values of its mass m′ (Fig.2) and focal parameter of its orbit p′ (Fig.1). The focal
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Fig. 1. Variations in the semimajor axis a of Jupiter’s orbit depending on the
true anomaly v′ of the sample star moving in a hyperbolic orbit with e′ = 1.15

and m′ = 5M⊙ : dotted line corresponds to p′ = 107.5AU (q′ = 50AU), solid
line corresponds to p′ = 161.25AU (q′ = 75AU), and dashed line corresponds to

p′ = 215AU (q′ = 100AU).

Fig. 2. Variations in the semimajor axis a of Jupiter’s orbit at p′ = 161.25 AU: dotted
line corresponds to the mass m′ = M⊙ of the sample star. Dashed line corresponds

to m′ = 3M⊙ , and solid line corresponds to m′ = 5M⊙
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Fig. 3. Variations in the eccentricity e of Jupiter’s orbit depending on the true anomaly
v′ of the sample star moving in a hyperbolic orbit with e′ = 1.15 and m′ = 5M⊙ :

dotted line corresponds to p′ = 107.5AU, solid line corresponds to p′ = 161.25AU,
and dashed line corresponds to p′ = 215AU.

parameter p′ and perihelion distance q′ are related via the equation p′ = q′ (1 + e′)

for the hyperbolic orbit of the star.

Figures 3 and 4 illustrate the variations in the eccentricity e (with an initial
value e0 = = 0.04849485 ), while Figs.5 and 6 show the variations in the incli-
nation i (with the initial value i0 = 1◦.30327 ) of Jupiter’s orbit with similar
changes in the mass and perihelion distance of the star with the orbital eccen-
tricity e′ = 1.15, depending on the true anomaly v′, respectively. As can be seen
from the figures, after the star recedes to a large distance from the Sun, Jupiter’s
orbital elements a, e, and i slightly change and differ from the initial values a0, e0,
and i0. However, the maximum changes in the size and shape of Jupiter’s orbit
occur only in the case when the sample star is at perihelion, and Jupiter is in
opposition.
Table 1 lists the changes in the orbital elements of Jupiter ∆a,∆e, and ∆i de-
pending on the parameter p′ for the hyperbolic (e′ = 1.15) orbit of the star and on
its mass m′. As can be seen from the table, the changes in the orbital elements of
Jupiter (semimajor axis a and eccentricity e ) are minor. The maximum changes
in the elements a and e occur where a star with a mass m′ = 5M⊙ at a distance
q′ = 50AU (or p′ = 107.5AU ) approaches the Solar System in a hyperbolic orbit.
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Fig. 4. Variations in the eccentricity e of Jupiter’s orbit at p′ = 161.25AU : dotted
line corresponds to the mass m′ = M⊙ of the sample star, dashed line corresponds

to m′ = 3M⊙, and solid line corresponds to

m′ = 5M⊙.

Table 1. Changes in the orbital elements of Jupiter∆a,∆e, and ∆idepending on the
focal parameter p′for the hyperbolic orbit ( e′=1.15) of the star and on its mass m′

p′(AU) m′ ∆a(AU) ∆e ∆i(deg)

M⊙ -0.009631 0.000214 0.07275
107.5 3M⊙ 0.025592 -0.003532 0.169424

5M⊙ -0.030154 -0.012621 0.238626

M⊙ 0.002507 -0.001059 0.039625
161.25 3M⊙ 0.007816 -0.002124 0.087279

5M⊙ -0.012734 -0.004218 0.121404

M⊙ 0.001077 -0.000491 0.025249
215 3M⊙ 0.003302 -0.001224 0.055089

5M⊙ 0.005928 -0.001482 0.076197
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Fig. 5. Variations in the inclination i of Jupiter’s orbit depending on true anomaly
v′ of the sample star moving in a hyperbolic orbit with e′ = 1.15 and m′ = 5M⊙ :
dotted line corresponds to p′ = 107.5AU, solid line corresponds to p′ = 161.25AU,

and dashed line corresponds to p′ = 215AU.

Fig. 6. Variations in the inclination i of Jupiter’s orbit at p′ = 161.25AU : dotted
line corresponds to the mass m′ = M⊙ of the sample star, dashed line corresponds

to m′ = 3M⊙, and solid line corresponds to m′ = 5M⊙.

5. CONCLUSIONS

The problem of the evolution of Jupiter’s orbit during stellar encounters with
the Solar System has been considered within the restricted hyperbolic three-body
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problem. The influence of a disturbing body (a star) as it approaches the center
body (the Sun) in a hyperbolic orbit on the orbit of a passively gravitating body
(Jupiter) has been studied. The exact expression of the force function has been
used without expansion in series.Variations in the orbital elements of Jupiter de-
pending on the true anomaly of the star moving in a hyperbolic orbit relative
to the central body have been determined. Also, the variations in the orbital
elements of Jupiter depending on the perihelion distance of the star (or the focal
parameter of its orbit) and on its mass have been found. The results are presented
in figures and tables.

It has been shown that a star with a mass of one to five solar masses approach-
ing the Solar System in a hyperbolic orbit at a minimum distance between 50 and
100 au from the Sun significantly influences the shape and dimensions of Jupiter’s
orbit only in the case when the sample star is at the perihelion, and Jupiter is in
opposition.

This work allows us to predict the change in the elements of the orbit, or its
evolution with a possible approach to the solar system of a star. The results of
this work can be used to describe the evolution of planets in a planetary system
when a star approaches this system. Another application is to study the evolution
of stellar orbits in one galaxy as a result of the passage of another galaxy at a
hyperbolic velocity relative to the other.
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