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A set of algorithms and programs is reviewed, which are most effective for
statistically optimal mathematical modelling of various types of variability.
Although these methods were proposed and applied for photometry and
polarimetry of 2000+ variable stars, as excellent laboratories to study various
processes, they may be applied to signals of any nature, e.g. technical,
medical or social. For "mono-periodic" stars (with high level of coherence),
"global" approximations are most effective - either a trigonometric polynomial
of statistically optimal order (mainly for pulsating stars or for eclipsing binaries
with smooth curves (EW, EB), or for stars with elliptic variability. However,
for Algol-type variables or transits of exoplanets, a "special shape/pattern"
approximations superimposed onto the second-order trigonometric polynomial
are recommended. For quasi-periodic variations, the wavelet analysis may
be used (in some programs, with an adaptive effective width determination),
or the scalegram analysis with further local weighted approximation with an
optimal width. This method may be effective even in a case of strong flickering,
fractal variations, red noise. Wavelet and (especially) scalegram analysis (some
modifications are called “multi-resolution”, “multi time-scale”) may separate
variability at different time scales. Particularly, some types suggest long-term
aperiodic variability, which may be effectively modelled by an algebraic or
trigonometrical polynomial. In a case of trends, the periodogram analysis is
to be made using a complete mathematical model instead of super-simplified
“detrending” or “pre-whitening”, which may cause wrong (biased) results. Some
algorithms are illustrated by application to the observations.
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1. INTRODUCTION

Variable stars show a wide variety of types of variability. According to the
"General Catalogue of Variable Stars" [1], there are 70+ "main" types of vari-
ability and hundreds of "mixed" types with two or more types of variability.

This makes impossible to apply a single algorithm to all these signals, e.g. the
most popular Fourier Transform (FT) and few its variations (FFT, DFT, DCFT
etc.) and improvements based on the mono- or multi-harmonic approximations.
It is necessary to have a set of numerous algorithms to apply one or few of them
to a concrete object.

For the illustration of some algorithms, we have used the data from the AAVSO
International database [2] and the "Open European Journal on Variable Stars".

Recent reviews on these and other methods are in [3], [4], whereas some high-
lights of the results on pulsating [5] and interacting binary [6] stars are published.

The studies by our group (there are many other co-authors of other published
papers) were named in 1983 as an "Inter-Longitude Astronomy" (ILA) project
[7], [8] in a collaboration with the "Ukrainian Virtual Observatory" (UkrVO) and
"AstroInformatics" projects [9].

In this paper, we show references for original papers with a complete descrip-
tion of the algorithms and/or applications to concrete objects.

2. ALGORITHMS AND SOFTWARE FOR THE DATA ANALYSIS

2.1. General approach

We prefer to use (linear or non-linear) least squares (LSQ) approximations

xC(t) =

m∑
α=1

Calpha · falpha(t) (1)

with an improved version of the test function [10]

Φ(xk;C; f) =
m∑

α,β=1

p(tk, tj) · wkj(O − C)k(O − C)j , (2)
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where xk, k = 1..n are observed ("O") values of the signal at the moment
(argument) tk, xC(tk) are calculated (C) values at the same moment, weights
wkj = σ2

0 · µ
−1
ij , µij is a covariation matrix of errors of observations. The classical

approach is to use only diagonal matrices wkj = wkk ·δkj . In this case, wkk = σ2
0/σ

2
k

(σ0 is called "the unit weight error", σk is a statistical error estimate of xk. A
simplified version wkk = 1 is used very often in electronic tables and many papers.
The weight (or "filter", or "kernel") function is dependent on the dimensionless
"distance" z = (t − T0)/∆t, where, according to the "wavelet terminology" [11],
T0 is "shift" and ∆t is scale. In the "scalegram" terminology, they are called
"trial time" and "filter half-width", respectively [10].

2.2. Periodic Signals

The Fourier Transform (FT) as well as its modifications suggest that the data
are distributed "evenly" ("equdistantly", tk = tm + (k − m) · δ, k,m = 1..n, δ

is time resolution.The duration of observations D = (tn − t1) · n/(n − 1), as one
may formally extend tk+l·n = tk + l · P for any integer l. The test periods are
resticted to Pj = D/j = P1/j, j = 1..int(n/2). However, the observations of a
star during the night (D) do not generally cover an integer number of periods.
This causes a lot of peaks at the periodogram [12], which is computed at a grid
of trial frequencies differing with a step of ∆f = ∆ϕ/(tn − t1)/s, where Deltaϕ

is a phase shift between the first and last observations, s is the degree of the
trigonometric polynomial (s = 1 for a sinusoid), and is recommended to be in the
interval [0.04-0.06] (anyway, < 0.1). The Fortran program [12] was later realized
in the program MCV ("Multi-Column Viewer") [13], [14]. Moreover, the program
MCV has additional features like a periodogram analysis using a polynomial trend
superimposed on a trigonometric polynomial of power s, a multi-periodic multi-
harmonic approximation with trend, an algorithm of the "artificial comparison
star", et al.

Instead of using trigonometric polynomials, one may split observations into L

subintervals (for each trial period) and use approximations with spline functions
of different order and defect (see [15] for a review and a comparative study).

An alternate group of methods for searching for periodicity is called the
"non-parametric" (or "point-point") methods, contrary to "parametric (or "point-
curve") methods mentioned above (see [16] for a comparative study).

2.3. Quasi-Periodic and-Aperiodic Signals

[16] There are three main methods to study such signals. The autocorrelation
methods are widely used for regularly spaced data (e.g. [17]). Detailed modelling
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of the autocorrelation function bias owed to a limited number of de-trended ob-
servations was presented by [18], with applications to autoregressive models with
noise.

Four-component model of the auto-correlation function for the X-Ray (Chan-
dra) data of the prototype polar AM Her lead to the discovery of the two-
component shot noise from the accretion column above the white dwarf. This
was interpreted by cutting of the column into 17 pieces due to the magneto-
hydrodynamic instability [19].

Wavelet analysis of the irregularly spaced time series by the least-squares
method with supplementary weights was introduced by [20], who described spec-
tral and statistical properties of the trial and smoothing functions are studied,
and optimal argument and frequency steps are suggested.

This method was applied to almost two hundred semi-regular variables [21].
The decay coefficient of the exponent in the weight function significantly influ-
ences of results of the data with long seasonal gaps. Some stars show drastic
changes of the amplitude, like transitions between the Mira-type variations and
constant stars.

The "scalegram analysis" may be based on any weight function. E.g. the
Morlet-type wavelet, which is mentioned above. However, for a strong cycle-to-
cycle variability, one has to choose shorter effective intervals. So sines of small
angles may be replaced by a line, and cosines - to parabola.

The method of "Running Parabolae" was proposed in [22] as a generaliza-
tion of the method of "running approximation" ("running mean", "moving av-
erage". The weight function for the observation xk at time tk was chosen as
pk = (1 − [|tk − t0|/∆t]α)β. The weight function is zero outside the interval
[t0 −∆t, t0 +∆t].

The values α = 2 and β = 2 are sufficient to avoid the discontinuity of the
smoothing function and its derivative. The systematic error for the method of
"running parabolae" is much smaller as compared with that for "running mean"
with the same filter half=width ∆t.

The analytical accuracy estimates for the generalized smoothing function, its
derivative and the extrema for any basic and weight functions are presented by
[23]. Particularly, this formalism was extended to the wavelet analysis [20].

There was introduced a "σ”− scalegram anslysis, where σ is an unbiased
weighted mean squared deviation of the observations from the approximation.
For nearly periodic signals, it has two characteristic "standstills" at ∆t << P

and and ∆t >> P with a linking part inbetween. This allows to determine an
effective period or a quasi-period (="cycle length") and a corresponding semi-
amplitude.
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The statistically optimal value of ∆t may be determined using the ”xC−
scalegram, i.e. the dependence on ∆t of the r.m.s. accuracy estimate of the
observations at times of these approximations. However, for noisy observations,
there may be a local minimum at ∆t ≈ 0.5P, then a hump and decrease to a
lower asymptotic value ∆t/P → ∞, which corresponds to global parabolic ap-
proximation using a rectangular weight function. This is an often case for visual
observations of semi-regular variables and low-amplitude Mira-type stars. Then
one may recommend to use the "S/N=SNR" (amplitude "signal-to-noise" ratio.
The value of ∆t, which corresponds to a maximum of SNR, is typically close
(within a few per cent) to a (global or local) minimum of xC .

In the case of multi-periodic variations, there may be corresponding "stairs".
Extremely interesting is a case of fractal variations, which was discovered in a
cataclysmic variable AM Her [24]. One may see similar variations in flickering of
cataclysmic or symbiotic variables, but for much smaller intervals of ∆t.

In the majority of our programs dealing with the "weight" function, the
"bisquare" (α = 2, β = 2) version is used. Obviously, there may be other pairs for
the approximation, starting from a rectangular (α → ∞, β > 0, or, alternately,
α > 0, β = 0, ), triangular (α = 1, β = 1). In the algorithm LOWESS, different
sets of parameters (α, β and the degree of polynomial) may be used [25]. E.g.
[26] recently used (α = 3, β = 3).

2.4. Times of Extrema

The studies of period variations are done using either the complete light curve
(rare) or the moments of the characteristic events (minima, maxima of bright-
ness, or crossing some value (e.g. the γ− velocity by a radial velocity). Recently,
there is an often abbreviation ToM (Time Of Maximum/Minimum). The devia-
tion (O − C) from a linear ephemeris is often interpreted by the presence of the
third (etc. body) around the eclipsing binary (LiTE - Light Time Effect), apsidal
motion, mass transfer between the components of eclipsing systems or periodic
(the Blazhko effect) or aperiodic variations ( [27]). Such studies use only one
ToM from a complete night (or even a season), thus needs much smaller number
of observations - only a small part of the light curve near an extremum.

An old method was a graphic one based on the hand-drawn light curve. It
is not accurately repeating, and there is no correct error estimate. Kwee & van
der Woerden [28] proposed a numerical method, based on a search of the point of
"symmetry" (or "reflection"). This method was polular for decades. However, it
produces a "saw-like" test function, so may produce an underestimated accuracy
of ToM, which corresponds to a local minimum (which may be different from the
global one because of fluctuations of the test functions).
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A parabolic approximation was mentioned in [29]. For asymmetric curves (e.g.
of the pulsating variables), a high-order polynomials (of a statistically optimal or-
der) may be recommended [12]. They were used e.g. for determination of the
6509 extrema of 147 semi-regular variables [30].

High-order polynomials may be good at the center of the interval, but may
produce formal waves closer to the borders of the interval, and gaps in the obser-
vations. Cubic splines seem better than the polynomials with the same number
of parameters [15].

Local "asymptotic parabola" fits of signals with almost linear ascending and
descending branches connected by relatively short parabolic transitions at maxi-
mum or minimum were proposed by [31], [32] and further realized by [33]. This
is a kind of spline with a changing fixed order (1 + 2 + 1).

Non-polynomial approximations for generally asymmetric shapes were re-
viewed by [34]. New "Wall-Supported Polynomial" algoritms [35] may be effective
for modelling flat eclipses and exoplanet transitions. Finally, these and other al-
gorithms for statistically optimal determination of phenomenological parameters
of extrema were realized in the software MAVKA [36] – totally, 11 classes of func-
tions with 21 individual functions, with automatic determination of the degree of
symmetrical or (generally) asymmetrical polynomials.

3. CATACLYSMIC AND SYMBIOTIC VARIABLES

Cataclysmic variables were intensely studied in our group polarimetrically
in 1989-2014, based on observations at the Shain 2.6m telescope and the tele-
scope AZT-11 of the Crimean Astrophysical Observatory, by S.V.Kolesnikov and
N.M.Shakhovskoy (1931-2011). The history of polarimeters were reviewed by [37],
[38], the program for the data reduction was described by [39] and the highlights
were briefly listed in [40], [6].

CCD observations were performed within an international campaign ILA
("Inter-Longitude Astronomy") in many countries. The orbital and spin vari-
ability of the intermediate polars BG CMi [41], MU Cam [42], V405 Aur [43],
V2306 Cyg [44] were studied. All these systems show a spin-up of the magnetic
white dwarf due an accretion torque.

"The Noah" project ("40 nights of observations") was performed to study
switches of the accretion from one pole to another in an asynchronous polar BY
Cam [45], as was theoretically suggested by [46]. During the "Noah-2" project, a
third bright accretion region was detected [47]. It may be located near the threat
point, similar to another synchronizing polar V1432 Aql [48].

The low-field magnetic dwarf nova DO Draconis exhibited a new type of vari-
ability - "transient periodic oscillations" TPO [49], which are distincly different
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from the "quasi-periodic oscillations" seen in "non-magnetic" Nova-like stars like
TT Ari [50].

Long-term photometry of the symbiotic nova V1329 Cyg [51] and V1016 Cyg
[52] was analyzed.

4. PULSATING VARIABLES

Long-period pulsating variables (LPV) were studied on old photographic
plates from the Odessa "7-camera" astrograph, as well as on published photo-
metric surveys, mainly from the AFOEV and AAVSO databases.

The catalogue of main characteristics of pulsations of 173 semi-regular stars
was published by [30] and based on the observations of the AFOEV [53] database,
which were previously cleaned from obvious outliers. The catalogue contains re-
sults of the periodogram, scalegram and the wavelet analyses.

A series of papers was on Mira Ceti-type variables with H2O maser emission
[54], [55], [56], [57]. For relatively stable light curves of M-type variables, the
trigonometric polynomials of statistically optimal order were computed, and the
Fourier-related coefficients were published [58], [59].

Phase plane analysis of the photometrical variations of long-period variables
was proposed by [60]. Some asymptotic giant branch stars showed a linear de-
crease of the period [61], [62].

Periodogram analysis of RV Tau-type stars and their classification was pre-
sented by [63].

5. ECLIPSING AND "HEART-BEAT" VARIABLES

Phenomenological modeling of the light curves of Algol-type (EA) eclipsing
binary stars may be optimally done using the NAV ("New Algol Variable") algo-
rithm instead of using (very high order) trigonometrical polynomials with dozens
of parameters [64]. However, it may be applied also to β Lyrae and W UMa-type
stars with much smoother light curves [65], which are classically supposed not to
have distinct begin and end of eclipses [1]. The accuracy of the period and other
parameters may be better by a factor of few times (or even dozens times) than
compared to harmonic or multi-harmonic approximations.

The analysis of the (O − C) diagrams was performed to study effects of the
mass transfer and presence of the third components in eclipsing systems with
circular or elliptic orbits [66], [67], [68],

In the binary system 14 Pegasi a reflection effect due to a highly eccentric
orbit was detected [69] "Heart-Beat" variable.
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An extreme "Direct Impactor" model was proposed for the system V361 Lyr,
where the accretion stream impacts the star, which nearly fills it’s Roche lobe
without formina a bright accretion disk [70].

6. NEWLY AND RECENTLY DISCOVERED VARIABLE STARS

A new software FVSE (Flexible Variable Star Extractor) for variable stars
detection using various variable detection indices was elaborated [71]. The phe-
nomenological approximations of newly discovered eclipsing binaries using the
NAV algorithm allows to make estimates of the parameters of these systems,
which may be used for further physical modelling [72], [73], [74]. A new variable
TIC 230386284 combines EA+UV types [75].

7. CONCLUSIONS

We presented some results of our studies of variable stars of different types
with an extended list of references to original papers.
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